NUMERICAL INVESTIGATION OF THERMOCONCENTRATIONAL
CONVECTION IN THE LIQUID CORE OF A

CRYSTALLIZING BINARY MELT

P. F., Zavgorodnii UDC 621.746.7.001

Thermoconcentrational convection in a solidifying binary melt is numerically investigated,

A crystallizing binary melt is characterized not only by temperature inhomogeneity of the liquid core due
to the interaction between the thermal motion and the gravitational field, but also, because the impurity is of
different solubilities in the solid and liquid phases, by concentration inhomogeneity, which leads to the .appear-
ance and development of convective motion — called concentrational convective motion.

The combined interaction with the gravitational field of the temperature and concentration inhomogeneities
in the liquid core of a crystallizing binary melt causes thermoconcentrational convective motion in the melt.
Nevertheless, several hydrodynamic investigations of the liquid core of a crystallizing melt (see, for example,
[1-3]) have considered a pure melt or ignored the effect of the concentration inhomogeneity [4].
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Fig. 2. Change over time in the maximum velocity of a descending convec-
tive flow: 1) Gr=Grp=0.2-10% 2) Gr=0.2- 107, Grp=0.2- 10%; 3) Gr =Grp=
0.2- 107 4) Gr=0.2- 107,

Since most substances in a molten state contain a certain amount of impurity, a numerical investigation
of the hydrodynamics in the liquid core of a crystallizing binary melt, taking into account both the temperature
and concentration inhomogeneity, should serve to bring the theoretical model closer to the actual process and,
correspondingly, to give a broader understanding of this process.

The region considered in constructing a mathematical model of the appearance and development of ther-
moconcentrational convective motion in the liquid core of a crystallizing binary melt is rectangular and semi-
infinite along the horizontal axis, with a cross section of relative dimensions I; x1I,.

Initially, the melt is in a quiescent state, with a homogeneous initial temperature distribution, T,> T¢,
and a uniform impurity distribution with initial concentration c,.

Some time later (t> 0), the temperature at the boundary of the region decreases discontinuously to the
crystallization temperature Tg, and a solid phase forms at the boundary. The moving phase boundary is assumed
to be a plane directly separating the solid and liquid regions. -

The time dependence of the solid-phase and liquid-core thicknesses is derived from the classical Neu-
mann solution of the Stefan problem. In dimensionless form, the appropriate expressions are as follows:

R,=alFo, &,=1l,—aVFo (i=1, 2),
and the corresponding ranges of the variables 7, and 7, are
Ri<mi<e, RyKmp<ey
This choice is reasonable. I follows from [3] that taking into account the influence of convective motion in the
liquid core on the heat transfer through the solid phase — which is essentially what determined the position of

the phase boundary over time — does not have sufficient effect on the final result to justify a more complicated
program and a corresponding increase in the computation time,

In dimensionless form, the initial system of equations is as follows: the equation of motion in the Bous-
sinesq approximation, under the condition that the characteristic velocity and pressure are determined by the
conditions
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%+(UV)S=AS» 3)
and the continuity equation
yU=0. @)
The system (1)-(4) is closed by the boundary conditions

Fo=0 U=0, 8=1, S=1,
as
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Intrpduc‘mg the stream function §, related to the velocity components uy and uy by the expressions u; =

oY
am, * 2= By, - thevorticity o=rot U, and the new variables {, = e, __Ilg‘ b= n:_}lgz by means of

which the cavity is converted from rectangular to square cross section, so tha‘a,t 0=t =1 and 0 =l,=1through-
out the whole of the crystallization period, the initial system (1)-(4) and the boundary conditions (5) may be

written in the form
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Numerical realization of this problem is by means of an implicit finite-difference scheme of variable
directions (a longitudinal —transverse scheme) [5]. Uniform coordinate (wh) and time (Fop) grids are intro-
duced. The same numbers of divisions over the coordinates ¢, and ¢,(I~M) are chosen, and thus we obtain

1 1
= =il C=mh h=— =—;i=0,1,2, ..., I; m=0, 1,2,...,M};
O {Ci L. 7 M

2
Fo, = {F0= znr,-; T = %; 0<A<]; n=1, 2, 3}

Using the method of fractional time steps with simultaneous division over the coordinates ¢ and ¢, [6],

Eqs. (6)-(8) are brought to the form
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The superscripts +, A, and — in Egs. (11)-(16) correspond to the (n+ 1)-th, (n +1/2)-th, and n-th time step.
The Poisson equation — Eq. (9) - may be written in a form suitable for integration as follows:
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Here s is the number of the iteration and w is the relaxation parameter.

The difference analog of the system of boundary conditions (10) is of the form

Pom=Pm=0, O n=1, Srn=1, $om="VP1.m=Pi0 = ;1 =0, 17
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The boundary conditions (18) and (19) were obtained by expansion in Taylor series in the vicinity of the cor-
responding boundaries, using the initial equations after division over the coordmates and the corresponding
conditions from (10).

Using the integrointerpolational method formulated in [5], and determining the auxiliary coefficients in
accordance with [5], the system of equations and boundary conditions (11)-(20) may be reduced to a system of
algebraic equations, which have been tested on a Dnepr-21 computer.

A numerical investigation was made for the thermal and diffusional Grashof numbers (Gr =Grp=0.2- 105,
Gr =Grp=0.2-107, Gr=0.2- 107, Grp=0.2- 109 for steel with 1% carbon (c,=1%) in the initial overheating of
the melt, AT =T, — T¢=1°C, with k=0.5.

Trial calculations showed that to satisfy the conditions of mathematical stability and sufficient accuracy
of the calculations, a spatial 32 x 32 grid is necessary.

Analysis of the curves for the case Gr =Grp=0.2- 107 (Fig. 1) indicates that some time after the beginning
of the process (in this case Fo=0.2- 1079, the direction of the convective motion in the liquid core is reversed.

The explanation is evidently as follows. I the given binary melt, the specific weight of the impurity (car-
bon) is less than that of the basic melt (iron). Therefore, the convective motion produced by the concentration
inhomogeneity which arises in the course of the process is in the opposite direction to the thermal convection
due to the temperature inhomogeneity, However, at times shortly after the beginning of the process, the tem-
perature inhomogeneity develops considerably more rapidly than the concentration inhomogeneity (Fig. 1b, ¢),
so that at this time it is the thermal convective motion which determines the overall direction of the motion in
the liquid core (Fig. 1a).

As the initial temperature excess of the liquid core is removed (estimates show that this temperature
excess persists for 15-20% of the total time of crystallization), the temperature inhomogeneity equalizes (Fig.
le). Against this background, the effect on the melt of the concentration inhomogeneity, which has become suf-
ficiently well developed by this time, begins to be more clearly expressed (Fig. 1d, f).

From the time that the temperature inhomogeneity is practically equalized (Fig. 1h) and the concentration
inhomogeneity, being more stable, is sufficiently well developed (Fig. 1i), the direction of convective motion in
the liquid core is completely determined by the concentrational convective motion, which is in the opposite
direction to the thermal convection (Fig. 1g).

For the cases Gr =Grp=0.2"10% and Gr=0.2- 107, Grp=0.2 - 108, the thermoconcentrational convective
motion remains basically the same as for the case Gr =Grp=10.2* 108, although the rate of development of the
process over time and the velocity of the motion are different (Fig, 2). Thus, comparison of curves 1 and 2
shows that if the thermal and diffusional Grashof numbers are equal (Gr =Grp) the rate of development of the
process is higher and the velocity of convective motion in the liquid core is greater in cases of larger Grashof
numbers. Comparison of curves 2 and 3 indicates that for equal Grashof numbers, the thermal intensity of the
development of the process is less and the velocity of convective motion in the linuid core up to the time that
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concentrational convective motion becomes dominant is smaller in cases with larger diffusional Grashof num-
bers. However, in these cases the reversal in the direction of convective motion in the liquid core occurs more
rapidly.

The explanation is evidently that a larger diffusional Grashof number corresponds to more developed
concentration inhomogeneity of the liquid core. As a result, the concentration inhomogeneity begins to pre-
dominate more quickly over the temperature inhomogeneity, and hence the time in which the concentrational
convection comes to determine the overall direction of convective motion in the liquid core is reduced.

Comparison of curves 1-3 with curve 4 [4] indicates thaf thermoconcentrational convection, unlike ther-
mal convection, occurs in the liquid core of a crystallizing melt practically up to the end of solidification.

NOTATION

x,, characteristic dimension; ¢, ¢, current and initial impurity concentration; p, density of melt; v,
kinematic viscosity; P, current pressure in liquid core; e,, unit vector in the direction of the acceleration of
gravity; B, thermal-expansion coefficient; v, diffusional-expansion coefficient; g, acceleration of gravity; T,
current temperature of liquid core; a, thermal diffusivity; k, equilibrium-distribution coefficient; ri, ej (=1,
2), coordinates of phase boundary in the coordinate system; @, solidification coefficient; D, diffusion coefficient;
ii, velocity of convective motion in liquid core; Ly, Ly, height and width of crystallizer plane; 1 =x/x,, dimen-
sionless coordinates; Iy =L,/X,, ly=L,/X,, height and width of cavity in the coordinate system 0mymy; Rj =r;/x,,
€ =1i/x,, coordinates of phase boundary in the coordinate system 01 n,; U =ﬁ/u0, dimensionless velocity of
convective motion in the liquid core; ® =(T — Tc)/(To - T¢), dimensionless temperature of liquid core; = =P/
(Pmax — Ppin), dimensionless pressure in liquid core; S=c/c,, relative impurity concentration; Fo=Dt/x2,
dimensionless time; Sm=v/D, Schmidt number; Le =D/a, Lewis number; Gr =8 [§](T, — T¢)x3/v ?, thermal
Grashof number; Grp =y [Elegx3/v 2 diffusional Grashof number; h, coordinate-grid step; 7, time-grid step; A,
time factor.
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